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Over the last fifty years, work regarding the theoretical foundations governing the organization of mental processes 

has centered on the formal properties of various hypothesized mental networks. Such networks are defined in terms 

of their fundamental properties: processing order, stopping rule, and process dependency. Pivoting on the work of 

James Townsend and other essential contributors such as Richard Schweickert and Ehtibar Dzhafarov, these efforts 

resulted in the creation of the Systems Factorial Technology (SFT) - a suite of methodological tools for directly 

investigating the fundamental properties of cognitive operations. The SFT approach rests on rigorously tested 

mathematical tools for discriminating between serial and parallel processing, exhaustive and self-terminating stopping 

rules, and stochastic independence and dependence, as well as for discerning the capacity of an investigated system, 

all in a non-parametric (distribution-free) manner. The present study is focused on further refining recent advances in 

the SFT methodology and on the development of new tools for use with mental networks consisting of more than two 

processes. The present study also seeks to integrate these advances with the factorial tools developed to explore non-

homogeneous mental networks, which may consist of both serial and parallel processes (so called serial/parallel 

networks).  

 
 

 
One of the essential tasks of cognitive psychology is to learn 

how mental processes are organized in various cognitive 

tasks. Over the last several decades, cognitive psychologists 

have been trying to validate various cognitive models by 

asking questions such as: What is the order of the completion 

of these mental processes (e.g., serial or parallel)? Can a 

cognitive system be terminated when only a few or all 

processes has been completed (e.g., self-termination and 

exhaustiveness)? Do processes of interest depend on each 

other (e.g., process interdependency)? What is a system’s 

processing capacity (e.g., limited, unlimited, or super 

capacity). These questions focus on the aspects of processing 

which are all referred to as the fundamental properties of 

mental processes.  

There has been a constant development of 

methodologies to uncover the fundamental properties of 

mental processes. An important early contributor, F. C. 

Donders (1868) devised a subtraction method which 

measures processing time durations. In this method, two 

tasks are used with the only difference between the tasks 

being that in the second task, an additional process has been 

inserted. The duration of the inserted mental process is 

inferred by subtracting the times needed to complete two 

tasks. 

With the rise of the modern cognitive psychology 

in the 1960’s, a new approach was developed; the “additive 

factors method” explored the fundamental properties of 

mental processes such as serial and parallel processing order. 

Unlike the subtraction method, which worked via inserting 

processes, the  method proposed by Sternberg (1966; 1969) 

was based on affecting the duration of processes within an 

unknown mental network (with the motto “Stretching 

processes rather than inserting them”, after Schweickert, 

Fisher & Sung, 2012). Sternberg proposed that, by the virtue 

of selective influence, it should be possible to elongate the 

processing durations. The selective influence was (and is) 

considered as the critical conditional assumption of the 

methodology. This served as the experimental manipulation 

which would affect the duration of  only one of the processes 

and leave the other processes in the network unaffected. In 

the additive factors method, a factor is defined as an 

experimental variable which affects the duration of a single 

process of interest. The advantage of the additive factors 

over the subtraction method is that researchers do not need 

to change the structure of the mental network under 

investigation. 

In practice, the additive factors method employs 

an ANOVA to test for an interaction between factors. Serial 

and parallel processing are tested simply by observing the 

absence or presence of the interaction between experimental 

factors, respectively.  

In his seminal work on distinguishing between 

serial and parallel processing in short-term memory (STM), 

Sternberg (1966; 1969) proposed a combination of his 
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additive factors and Donders's subtraction methods. Some 

processes were stretched (e.g., imposing mask on a target) 

and some other processes were inserted (e.g., by varying the 

number of digits to be memorized across different conditions 

–also called workload). In his short-term memory studies, 

Sternberg concluded a strict serial processing of memorized 

units based on the following findings: (a) The interaction 

effects of the key experimental factors were not significant 

thus showing additivity. From the Sternberg’s point of view, 

the additive effects meant that the effects of either adding, 

subtracting or stretching processes independently affected 

overall response time in a STM task. The additivity supports 

the hypothesis that the selective influence held; and (b) The 

reaction time (RT) showed the linearly increasing trend as a 

function of the number of memorized items (linear RT 

function of workload), that is RT increased linearly as a 

function of the workload. This finding supported that the 

scanning time per one item was constant over the memory 

load and consequently supported the hypothesis that the 

memorized items were scanned in a serial fashion. Sternberg 

believed it would be possible to discriminate between pure 

serial and parallel processing by analyzing the shape of the 

RT-workload function: the landmark signature of the serial 

system should be a linearly increasing RT-workload 

function. That is by adding more processes the system 

should slow down at a constant rate. In contrast, the parallel 

system should exhibit a flat RT-workload function, that is, 

by adding more processes that are analyzed in parallel, the 

system should not slowdown in processing as all processes 

occur simultaneously.    

 

The theoretical breakthrough 
 

In the original Sternberg STM paradigm, one of 

the key experimental manipulations is the number of 

memorized units (workload). By manipulating a workload, 

a researcher directly increases or decreases a size of the 

mental network that make a short-term memory store and 

consequently affects a number of conducted processes. For 

example, if a subject has to memorize 4 items then the 

search for the target item should include N=4 of target-to-

item comparisons.  

Essentially, the workload manipulation is based on the 

insertion method which has been criticized in the post-

Dondersian era as having the potential to inviting 

confounding variables (e.g., Townsend, 1971; Townsend & 

Ashby, 1983). For example, by inserting a number of 

memorized units, thus adding more items to be memorized, 

one would also be affecting the capacity of short-term 

memory storage. If the system is of limited capacity then it 

is to be expected that stored items should receive part of a 

shared amount of resources. So as workload increases it is 

likely that a cognitive system with limited capacity would 

distribute less processing resources per memorized unit. One 

could argue that such capacity limitations would not prevent 

the serial processing system from exhibiting its landmark 

signature - the linearly increasing RT-workload function. 

Provided that each processing unit receives the same amount 

of shared limited capacity the RT-workload function should 

increase linearly as more items are processed in a strictly 

serial fashion.  

However, the parallel system under the same 

capacity limitation would fail to leave the classical parallel 

processing signatures: the flat RT-workload function. The 

problem is that quite naturally parallel models whose 

channels become less efficient as workload increases can 

make predictions identical to those of serial models —this is 

the well-known model mimicking dilemma. The 

groundbreaking work to solving the model mimicking was 

laid out by the work of James Townsend and his colleagues 

(e.g., Townsend, 1969; 1971; 1972; Townsend & Ashby, 

1983, Chapter 14).  

 

 

Pure stretching method 

 

The work that followed Sternberg’s studies was focused on 

designing the new methodologies to explore the fundamental 

properties of mental processes.  Built on the work of James 

Townsend and other essential contributors such as Richard 

Schweickert and Ehtibar Dzahfarov the efforts resulted in a 

creation of the systems factorial technology (SFT) – a suite 

of methodological tools aimed at discovering the 

fundamental properties of cognitive operations. The SFT 

approach rests on rigorously tested mathematical tools for 

discerning serial from parallel processing exhaustive from 

self-terminating processing, process (in)dependence and the 

capacity of the system under investigation. During the three 

decades following the cognitive revolution in 1960s, James 

Townsend worked on refining the non-parametric 

mathematical methods that constitute the SFT suite of 

methodologies.  

The breakthrough in the work of James Townsend 

(Townsend & Ashby, 1983; Townsend & Nozawa, 1995)  

was the theoretical definition and application of the so-called 

pure stretching method approach (Schweickert, Fisher & 

Sung, 2012); In the pure stretching approach no processes 

are inserted, and the analysis of the underlying mental 

network is conducted on a fixed number of processes. The 

pure stretching approach avoids possible confounds due to 

the capacity issue in exploring serial parallel system’s 

properties using the insertion method. As a result, the pure 

stretching method improves the model selection by reducing 

a possible mimicking between different models.  

 

Single factor manipulation: Stretching one process 

 

 To explain the effect of stretching of a certain 

mental process over time, I will define an internal 

psychological function h that affects the speed of mental 

process X by either slowing down or speeding up. I will also 

define a binary valued variable x={xlow, xhigh}, such that this 

set is ordered xlow < xhigh. If, take that x is a fixed factor, then 

it is operationalized as an external manipulation which 

exclusively affects only the process of interest X, providing 

previously mentioned the selective influence. The effect of 

the manipulation of x on a speed of a mental process tX is 

determined by the h(X;x). The following conditions should 

apply so that the stretching manipulation could be used in 

SFT approach:  

(a) Selective influence holds. This means that each 

experimental manipulation always works to affect only one 

process of interest (Sternberg, 1966; 1967).  
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(b) Stochastic order holds. The stochastic order of the effect 

of h function on a mental process duration is preserved for 

different magnitudes of external manipulation. Assume an 

underlying process of interest X which duration is affected 

by the h(x). Assume that the process X is selectively 

influenced by binary valued experimental factor x across 

different levels (low and high) then it should always hold 

that E[tX;xlow] ≥ E[tX ; xhigh]. In other words, the manipulation 

of a factor x at a low level should always lead to an equal or 

a slower expected processing rate of the process X then when 

x was at the high level. Even stronger test for the stochastic 

order (stochastic dominance) is conducted by looking at the 

order of corresponding survivor functions of reaction times, 

thus replacing the expectation times with the survivor 

function: S(tX; xlow) ≥ S(tX; xhigh). 

(c) Process independence between processes holds which 

means that the rate of processing of a single process (say X) 

does not  depend on any other process in a mental network 

(say Y and Z).  

In practice, the stretching manipulation via the 

function h, is usually achieved either by selective visual 

masking (Sternberg, 1969), stimulus brightness (Townsend 

& Nozawa, 1995) in the cases of external visual search, or 

by inter-item similarity in the case of an internal memory 

search or categorization (Townsend & Nozawa, 1995; 

Townsend & Fific 2004, Fific, Little & Nosofsky, 2010). 

The stretching effect of process X is presented here 

as a first-order difference operator Δ applied on the h 

function of the mental process X, for the parameter x:  

( ; )h X x  (see also Townsend & Thomas, 1994). In case that 

the function operates at the expected time value of the 

process X:  

 

 [ ; ] ;  - ] 0;[X X low X highE xt E t x E t x    (1) 

      

Or at the survivor function level: 

 

( ; ) ) S(; ; ) 0(X X low X highS xt S t x t x      for all tX 

 

In practice, the first-order difference effect on 

mean reaction times indicates whether the mental process of 

interest was affected by experimental manipulation.  

 

 

Double factorial manipulation: Stretching two process 

 

Here we consider a minimal size mental network 

made of two processes that allows for assessment all 

fundamental properties. To assess properties of mental 

networks a researcher orthogonally combines the 

manipulated variable levels (for more details see Anderson 

& Whitcomb, 2000). In SFT, the h function that operates on 

two variables (tX, tY) orthogonally combines the binary 

values of each experimental factor (low, high). Thus, the 

following second-order difference operator is defined: 
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This second-order difference 2 (X, Y; , )h x y  is also 

known as the interaction contrast used to measure between-

factor ANOVA interactions. The substantial literature is 

devoted to the nature of factorial tests in research (Anderson 

& Whitcomb, 2000, Maxwell & Delaney, 1999). The 

second-order difference in this form results in the four 

conditions corresponding to the four h function in the Eq 2. 

One can observe that four conditions are obtained by the 

orthogonal combination of the levels of the manipulated 

values of the factors (low and high). I will abbreviate the four 

conditions in the following fashion: LL, LH, HL and HH 

correspondingly to the last line of Eq 2. For example, LH 

means that the first manipulated stretching factor affecting 

the first variable tX was at the low level=L, and the second 

manipulated stretching factor affecting the second variable 

tY was at the high level=H.     

The second-order difference of a stretching effect 

provides sufficient information to explore the fundamental 

properties of the two mental process. First, it includes the 

two first-order differences, each providing information 

whether each of the experimental manipulation affected the 

process of interest through the stretching manipulation. 

Second, the information about the type of interaction 

between the two factors, through the second-order 

difference, can be used to distinguish between the 

fundamental properties. 

 

 

 SFT statistical tests for 2-process mental networks 

(N=2): MIC and SIC 

 

The main testing tools in the SFT approach are the 

two statistics applied on both expected value of response 

time RT (E[RT])  and on corresponding time survivor 

functions (S[t]) over time t.  

The second order difference Eq 2 could be applied 

on expected response time values, and it is known as the 

mean interaction contrast (MIC). The MIC statistic 

calculates the interaction between the factors, similarly to an 

ANOVA (Sternberg, 1969; see also Schweickert, 1978; 

Schweickert & Townsend, 1989): 

To calculate MIC for the two processes, the 

second-order difference is derived for two variables, (X,Y) 

each belonging to distinct process within an unknown mental 

network:  

 
2 [ , ; , ]

, , y , , y , , y[ ; ) [ ; ) ( ] , , y ][ ; [ ; )

Y

Y Y high Y hig

X

X low low X low X h Y high higow X hl

t t

E t t x E t t x E t t x

E x y

E t t x  

 

 

 

In the case of multiple processes one has to verify 

whether the first-order difference of the first variable (tX) 

aggregated over the levels of the other variable shows the 

expected mean order difference between low and high levels 

or not:  
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When stretching is in place, the expected response time 

expectation is that the average response of the process X 

takes longer when the level of stretching manipulation was 

low than high, across all levels of the y process 

manipulations 1:  

 
 [ ; [, , y] , , y] 0;X low X higY Y hE t t x E t t x   

 

The analogous check is done across the levels of y factor. 

The strong stochastic order (stochastic dominance) is 

verified by looking at the order of corresponding survivor 

functions, thus replacing the expectations with the survivor 

functions, and checking whether the difference between two 

marginal survivor functions satisfy the inequality for both 

across x and y: 

 

( ; (, , y) , , y) 0;X low X higY Y hS t t x S t t x   for all tX 

 

 

An even stronger test that the stochastic ordering is 

preserved is to check that the high and low effect on 

stretching of probability density functions cross exactly once 

(or an odd number of times (Townsend & Nozawa, 1995; 

Yang, Fific & Townsend 2014; Schweickert, Giorgini & 

Dzhafarov, 2000; Schweickert, Fisher & Sung, 2012).  

 

 The above second-order difference (Eq 2) on mean RTs can 

be written in the more popular form as so-called the double-

factorial test in SFT: 

 
MIC = (RTLL – RTLH) – (RTHL – RTHH ) =  

 RTLL – RTLH – RTHL + RTHH   (3) 

 

RT stands for mean reaction time and the left and right 

subscripts refer to the stretching levels of the first and the 

second mental process of interest correspondingly. For 

example, HL indicates a condition where the first factor 

(processing the first item) is at the high level and the second 

factor (processing of the second item) is at the low level. The 

resulting design could be denoted as 2 × 2 factorial design 

(as employed in ANOVA).  

                                                           

1 In the language of ANOVA, this would correspond to the finding the main 

effect of the first variable (e.g. Maxwell & Delaney, 1999). 

 Completely analogous to deriving the mean 

interaction contrast Eq 3, one can compute the  survivor 

interaction contrast (SIC). By replacing the mean RTs for 

each condition by the survivor function symbol, at each 

value of t, one computes: 

 

 SIC(t) = (SLL(t) - SLH(t)) – (SHL(t) - SHH(t)) = SLL(t) - SLH(t) 

- SHL(t) + SHH(t)   (4) 

 

In practice when the double-factorial SFT test is 

used, it is necessary to check whether the four factorial 

conditions satisfy the following order at the mean reaction 

times:  

 

M(RTLL) ≥ M(RTLH), M(RTHL)≥ M(RTHH) 

 

 And, the stronger test by inspecting the order of survivor 

function. It is important to keep in mind that, in order to 

apply SFT, the ordered survivor functions should not 

intersect when plotted (for statistical tests see Houpt & 

Townsend, 2010; Houpt, Blaha, McIntire, Havig, & 

Townsend, 2014;  Yang, et al. 2014): 

 

SLL(t) ≥ SLH(t) , SHL(t) ≥ SHH(t),   for all t 

 

 There is a close relation with the results from the 

MIC because the value of the MIC is simply the integral of 

the SIC, for all values of t. The integral of the survivor 

function for a random variable yields the mean of that 

random variable. Because the survivor interaction contrast is 

simply a linear contrast of individual survivor functions, the 

integral of the SIC is a linear contrast of the means of the 

corresponding random variables (i.e., the MIC).  

 The showcase of the distinct diagnostic 

predictions of MIC and SIC patterns for several types of 

mental networks, made of two processes (N=2) are displayed 

in Figure 1A, the first column. The depicted mental networks 

are could be characterized as canonical networks as they 

possess only one processing order and one stopping rule. 

MIC value is presented in each signature’s upper right 

corner.  
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Figure 1: (A) The showcase of the distinct diagnostic predictions of MIC and SIC patterns for each distinct mental network (rows), 

of a size up to four processes (columns) for the full factorial research designs (top row). For the serial exhaustive mental network, 
the circles emphasize the intersection points of the SIC function and x-axis. (B) The bottom row indicate the type of simple 

interaction factorial test, derived from the 4-way full factorial design. Marginalized factors are denoted with a dot symbol. Each 

column indicate 2-way simple, 3-way simple and 4-way full factorial designs, and corresponding diagnostic predictions of MIC and 
SIC patterns.  Note that all six simple 2-way simple interaction designs predict shape-equivalent SICs and MICs, for different 

mental networks. The same holds for the four 3-way simple interaction designs. Both (A) and (B) predicted MIC and SIC results 

are only relevant for the homogeneous mental networks (see the text for more details). 

 

 

 

 It is important to note that SIC provides more 

diagnostic power than MIC, as the SIC is a function of 

time, while MIC is the integrated value of that function 

over time . For example, certain classes of models cannot 

be distinguished using the MIC but can be successfully 

distinguished using the SIC 2.  

 Although the MIC test has less diagnostic power, 

MICs are more practical to use then SICs because one 

                                                           

2 Such a case would be the distinction between the parallel 

minimum time model on one side and the coactive model (or its 
close cousin - the parallel interactive model) on the other side. The 

MIC would predict positive values for all three model classes, but 

the SIC functions would differ in the small negative function 
values for early times (only the coactive and parallel interactive 

requires fewer trials to achieve stable estimates of the mean 

RT statistics than to get good estimate of the corresponding 

RT survivor function. So, there is a trade-off between 

practical applicability and the statistical power when using 

MIC and SIC.  

From Equations 3 and 4 it is immediately clear that 

the SFT method, based on the pure stretching method, 

bypasses the confounding concerns that challenged the 

application of the Sternberg’s insertion procedure in a short-

models predict early times t negative SIC values). Consideration of 

such cases is out of the scope of the current paper and more 

information is provided in other publications (Townsend & 
Nozawa, 1995).  
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term memory search task.  By using SFT there is no need to 

insert processes to learn whether processing is serial or 

parallel, instead an experimental situation with a fixed 

number of process (N=2 in Figure 1A) is sufficient. This 

way, the SFT approach addresses the serial/parallel 

mimicking problem (mentioned above) due to the 

confounding of the workload manipulation and the 

network’s capacity. 

The SFT tools are primarily considered as being 

meta-theoretical tools (or a meta-theory).  The SFT does not  

formally represent any specific model of cognitive 

operations. Instead SFT tools are primarily used for the 

operations of validation and/or falsification of cognitive 

models and also as exploratory tools to learning about new 

underlying cognitive operations.   

The SFT models’ validation/falsification power 

has been successfully utilized across different fields of 

cognitive psychology. The results challenged the standard 

expectations of some models to predict outcome of cognitive 

operations. For that purpose SFT has been used in the 

context of various cognitive tasks and domains: perceptual 

processes (e.g., Eidels, Townsend, & Pomerantz, 2008; 

Fific, Nosofsky, & Townsend, 2008; Johnson, Blaha, Houpt, 

& Townsend, 2010; Townsend & Nozawa, 1995; Yang, 

2011; Yang, Chang, & Wu, 2013), visual and memory 

search tasks (e.g., Egeth & Dagenbach, 1991; Fific, 

Townsend, & Eidels, 2008; Sung, 2008; Townsend & Fific, 

2004; Wenger & Townsend, 2001; 2006), face perception 

tasks (Fific & Townsend, 2010; Ingvalson & Wenger, 2005), 

and classification and categorization (e.g., Fific, Little, & 

Nosofsky, 2010; Little, Nosofsky, & Denton 2011; Little, 

Nosofsky, Donkin, & Denton, 2013). The SFT tools were 

recognized as potentially the most important and promising 

methodology in understanding cognitive processes 

(Greenwald, 2012).  

Another use of the SFT tools is to define the 

minimal research design complexity criteria which is 

necessary to learn about cognitive operations of interest 

(Fific, 2014). In other words, the SFT can define the 

benchmark for the size of the research design which   must 

be used to correctly recognize the network underlying 

cognitive operations.  The question posed here is: How 

complex should a research design be in order to make valid 

inferences from the study about the fundamental mental 

properties (see Fific, 2014 for more details)? The answer to 

that question depends on the number of mental processes 

under investigation.  So, to learn about a mental network of 

two processes (N=2), the SIC/MIC tests require at least two 

manipulated variables that are cross combined at the two 

process stretching levels (high and low). Then the number of 

experimental conditions is 22=4.  To learn about the larger 

mental networks made of three processes, the number of 

experimental condition should be 23=8. In general, to test 

                                                           

3 In a typical standard short-term memory task (Sternberg, 1969; 

Ratcliff, 1978) the trials are divided so that there is a total of half 

target-present and another half of target-absent trials. The target 
present-condition could employ both self-terminating search rule. 

That is a subject would stop searching for the target as soon as it is 

found. In the target-absent condition, all trials must be searched, 
employing the exhaustive stopping rule to make the correct 

more complex mental networks made of N process, one has 

to employ at least 2N experimental conditions.  

 

SFT statistical tests for 2-process mental networks 

(N=2): The principle limitations 

 

The development of the SFT tests for assaying 

networks of only two processes has helped in the validation 

of various cognitive models. However, the confinement of 

the SFT approaches to only N=2 two processes has limited 

the applicability of the SFT tools. Many cognitive tasks were 

originally designed to explore mental networks of larger 

sizes. For example, a short-term memory task which usually 

involves up modelling a search for up to 6 stored memorized 

unit, thus the proposed number of processes is N=6. Similar 

designs involving more than two processes (N>2) under 

investigation are typical in visual search and some decision 

making studies.   

 The main motivation behind extending the SFT 

approach to testing mental networks of larger sizes was to 

expand the application in different domains of cognitive 

tasks. The general extension of the SFT to an arbitrary 

number of mental processes has been published and detailed 

in recent work (Yang, et al. 2014).  

 

 

N-Factorial SIC for homogeneous systems: Advances to 

Higher Factorials 

 

The present section summarizes the extension of 

SFT method to large size networks (N>2) that are considered 

to be the homogeneous systems of mental networks. 

Homogeneous mental networks are here defined as a set of 

processes that are organized under a single processing order 

(serial or parallel) and under a single stopping rule 

(terminating or exhaustive). For example, Sternberg’s serial 

short-term memory processing model (Sternberg 1967; 

Ratcliff, 1978) is a homogeneous mental network employing 

only one type of processing order and one stopping rule for 

all elements. Ratcliff’s (1978) parallel model of memory 

retrieval is a homogeneous mental network as well 3. 

By definition, any mental network made of two 

processes (N=2) is a homogeneous network as long as there 

is only one processing order and one stopping rule that could 

be used. Adding at least one more process to an N=2 network 

could lead to multiple processing orders and stopping rules.  

 

 

Statistical tests, the SIC general form 

 

In both MIC and SIC statistics, the N-order difference 

function over the set of variables of interest is denoted as Δn. 

  

rejection. Both proposed models of short-term memory search 
(Sternberg, 1969; Ratcliff, 1978) assumed that a single stopping 

rule is used in either of the conditions (target-present of target-

absent) and that the single processing order was employed. Thus 
the proposed models are the variants of the class of the 

homogeneous mental networks.  



7 
 

The N-order factor difference at the level of survivor 

functions is defined as: 

 

1... 1...( ; )
N

N

X NS t x  

where 
1...NXt  represents a set of response time variables from 

1 to N.  

 

This N-order difference function is also denoted as

1... 1...( ) ( ; )
N

N

X

N

NS S xIC t t   as the SIC function can be 

generalized to the case for arbitrary N processes. The SIC 

functions for N=2, 3 and 4 processes are derived below: 

 

Second-order difference:  
SIC2(t) = Δ2 S(tX, tY; x, y) = [S

LL
(t) - S

LH
(t)] - [S

HL
(t) - 

S
HH

(t)] 

 

Third-order difference: 
SIC3(t)= SIC2(t; {L,H}) = SIC2(t; L) - SIC2(t; H)=  

[S
LLL

(t) - S
LLH

(t)] - [S
LHL

(t) - S
LHH

(t)]- 

 {[S
HLL

(t) - S
HLH

(t)] - [S
HHL

(t) - S
HHH

(t)]} 

 

Fourth-order difference: 
SIC4(t) =SIC3(t; {L,H}) = SIC3(t; L) - SIC3(t; H) = 

 [S
LLLL

(t) - S
LLLH

(t)] - [S
LLHL

(t) - S
LLHH

(t)]- 

 {[S
LHLL

(t) - S
LHLH

(t)] - [S
LHHL

(t) - S
LHHH

(t)]}- 

{[S
HLLL

(t) - S
HLLH

(t)] - [S
HLHL

(t) - S
HLHH

(t)]- 

{[S
HHLL

(t)- S
HHLH

(t)] - [S
HHHL

(t) - S
HHHH

(t)]}} 

 

Figure 1A shows the SIC functions for different 

mental networks up to the sizes of four processes (N=4). The 

SIC shapes for the higher order mental networks that are 

larger than four process can be derived by the induction from 

the related theorems (Yang, et al. 2014). As it can be seen 

from Figure 1A, the SIC signatures show a remarkable 

regularity in changing their shapes as the number of 

processes under investigation increases. The serial minimum 

time and the parallel terminating processing networks both 

show self-repeating patterns as a function of the size of a 

mental network (N). The serial minimum time SIC signature 

remains a flat function while the parallel-terminating SIC 

signature remains a positive unimodal function. These two 

SIC signatures could be characterized almost as having 

fractal properties as the output of these functions would 

recurrently generate the same SIC patterns regardless of the 

size of the network. To some extent, the self-repeating 

patterns are also evident in the case of parallel exhaustive 

system: the SIC function predicts the same shape, albeit the 

                                                           

4 Self-repeating SIC patterns across different sizes N: For some 

mental networks, the SIC signatures appears of identical shape 
across different mental network sizes. For example, the unimodal 

positive SIC function which is used to indicate the presence of the 

parallel minimum time processing network could not be used to 
differentiate whether the system used 2, 3, 4 or N number of 

processes. The self-repeating patterns could be characteristic of 

this function of having fractal properties. The solution for the self-
repeating SIC patterns is provided by the experimental method. 

function flips around the x-axis as with each new process 

(N). Thus, SIC is strictly negative for an even-number of 

processes and is strictly positive for an odd numbers of 

processes under investigation.  

The serial-exhaustive network shows the distinct 

coiling behavior around the principle x-axes: for the simplest 

serial network of the two process, the SIC function is first 

negative then positive under the condition that the two areas 

are equal. The serial exhaustive processing for N=2 

intersects the x-axes only once, thus introducing diagnostic 

property of N-1 zero-crossings. By adding more processes, 

the SIC function flips around the x-axis and coils once more 

around the x-axis, thus exhibiting another regular shape 

change “flips and coil” while the total sum of positive and 

negative areas is always zero.  

 The results of the recent extension of SFT to 

multiple processes (Yang, et al. 2014) provides new 

opportunities for extend exploration of fundamental 

properties of larger mental networks, and it provides means 

for validation/falsification operations in various cognitive 

tasks.  

 

Limitations 

 

The diagnostic signatures SIC derived for homogeneous 

mental networks (Yang, et al. 2014) are subjected to the two 

general limitations that can lead to diminishing the SFT 

diagnostic power: (1)  Non-unique SIC patterns: Upon visual 

inspection of Figure 1A it could be observed that there are 

some cases of different mental architectures predicting the 

same shape of the SIC function. Some mental networks are 

made of different fundamental mental properties which have 

an identical SIC signature for the same N’s. For example, 

Figure 1A shows that both the parallel minimum time and 

the parallel exhaustive network make the same SIC signature 

prediction when the number of processes is odd (N=3, 5, 7 

…) 4.  

(2)The diagnostic SIC signatures derived for homogeneous 

mental networks cannot be generalized to all types of mental 

networks. One such case is the class of non-homogeneous 

networks of larger sizes (N>2) which combine different 

processing properties within one mental network. For 

example, a case of a non-homogeneous network has some 

mental operations conducted in serial and some conducted 

in parallel5.  

 In the current chapter, I provide  new evidence 

and insights that could be used to address the concerns raised 

by the apparent limitations of the current SFT methods on 

the exploration of homogeneous systems consisting of more 

than two processes (N>2). These efforts could be seen as 

another extension of the SFT methods and as a suggestion 

The size of the network is manipulated by an experimenter and is 

specified in the experimental method.  
5 Another example would be the case of probability mixtures of 

homogeneous mental networks such that a subject would switch 

from one type of homogeneous mental network to another type on 

each new trial. For example, switching from pure serial to pure 

parallel in repeated experimental trials. Although the class of 

probability mixtures of the homogeneous mental network is an 

important case, it will not be covered in the current chapter.   
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about the new approaches which test even more complex 

mental networks. In order to unlock potentially more 

powerful diagnostic features of SFT approach, I will 

integrate some previous approaches with the novel ideas. 

The ideas will be reported in the form of proposals and their 

proofs in the following section. Within some of the 

proposals, I will provide the analysis of illustrative cases.  

 

 

Simple-Factorial SIC functions for homogeneous 

systems 

 

The existence of non-unique SIC signatures 

reduces the diagnostic power of SFT of homogeneous 

systems which is made of arbitrary number of processes 

(N>2). Note that each SIC function in Figure 1A is obtained 

by the analysis of the full factorial SFT design. That is, if the 

number of processes analyzed in the underlying mental 

network was N, then N variables were engaged in the full-

factorial SFT design. I argue here that the application of the 

lower-level interaction tests unlocks the additional 

diagnostic power of SFT tools. The argument is based on the 

findings that the simple interaction tests would provide more 

evidence to distinguishing between different types of mental 

networks.  

 

Claim: Applying a simple interaction factorial analysis on a 

full-factorial data set improves the diagnosticity of the SFT 

when applied on homogeneous mental networks of sizes 

larger than two under the conditions specified. 

 

Evidence: One can derive the new sets of SIC signatures for 

the lower-level factorial designs within a full factorial 

design. This is achieved by marginalization of the effects of 

some factors in a full-factorial design and by inspection of 

the SIC signatures obtained. For example, a four-process 

network, that is investigated by the four factors full-factorial 

design, can also be investigated by the four three-way 

factorial designs and six two-way factorial designs by the 

means of marginalization of single factors.  

 

The procedure of deriving low-level interactions is 

equal to the one conducted in factorial ANOVA. 

Marginalization6 is equal to averaging out the effect of 

unwanted factors. Given that a factor in SFT design 

represents a single process of interest, it could be in either a 

low or high state (selectively influenced by the experimental 

manipulation). Its marginalization would lead to excluding 

this factor from the design by averaging its effect across 

other factors. 

In practice, marginalization of the factors leads to having to 

combine the result conditions of the high and low stretching 

into a single condition. Assume a network is made of three 

processes (X,Y and Z) then the third order difference 

function is shown in a simpler form: 

 
SIC3(t)= 

[S
LLL

(t) - S
LLH

(t)] - [S
LHL

(t) - S
LHH

(t)]- 

                                                           

6 Another approach would be to condition rather than to 
marginalize but it is not addressed in this work.  

{[S
HLL

(t) - S
HLH

(t)] - [S
HHL

(t) - S
HHH

(t)]} 

 

 Each three subscript letters represent a different 

variable (X, Y, Z). Each variable represents a single process 

that could be in either a low (L) or high (H) state based on 

stretching manipulation. In the experimental study, each 

term represents an empirical survivor function of one 

experimental condition consisting of a sample of repeated 

RT trials.  

To derive the low level-interaction contrast 

functions of the second-order difference, one has to 

marginalize the effect of one variable in the equation. To 

find the second-order difference of the SIC function of the 

two processes between Y and Z, one has to marginalize the 

effect of X. To marginalize the variable X, which is the first 

variable in the subscript, one has to aggregate the low and 

high conditions for the first variable which leads to the 

following second-order difference between the two 

variables, Y and Z:  

 

SIC2 (., Y, Z)(t) = [S
LLL+HLL

(t) - S
LLH+HLH

(t)] - [S
LHL+HHL

(t)- S
LHH+HHH

(t)] 

  
 =[S

.LL
(t) - S

.LH
(t)] - [S

.HL
(t) - S

.HH
(t)] (5) 

 

The dot indicates a marginalized factor. The plus sign means 

the operation of union of data sets from the two different 

conditions (LLL+HLL). A similar procedure is used to find 

the other two second-order difference SIC functions (SIC2 
(X, . ,Z) and SIC2 (X, Y, .). We will refer to these as to the simple 

interaction SIC tests.  

This form (Eq 5) of the simple interaction SIC test 

above is equivalent to the form of the full-factorial 

interaction test. The second row in Eq 5 is the result of the 

first variable marginalization. This outcome is equivalent to 
the second-order difference SIC2 = [S

LL
(t) - S

LH
(t)] - [S

HL
(t) 

- S
HH

(t)]. One can show that derivation of the simple 

interaction SIC test of any factorial design will lead to the 

equation forms that are equivalent to the full-factorial SIC 

forms lessened by the number of marginalized factors.  

By using simple interaction SIC tests, and 

marginalization of variables, it is possible to derive all 

possible lower-order differences for any full-factorial 

design. The relevant SIC predictions for each distinct mental 

network, of a size up to four processes, are presented in 

Figure 1B.  

The analysis of simple interactions shown in 

Figure 1B directly addresses the issue raised by the non-

unique SIC pattern limitation when the SFT full-factorial 

designs were used. For example, in the case of shared SIC 

signature between the minimum-time parallel model and the 

parallel exhaustive model for the odd number of process 

(N=odd) under an investigation, the simple interaction 

factorial analysis now provides the set of simple SIC 

interaction contrast functions for each full-factorial design 

(Figure 1B). For example, take the case of N=3 SIC 

signatures, presented in Figure 2. Although the third-order 
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difference SIC functions are shared (thus non-unique) 

between parallel minimum time and parallel exhaustive 

models, the derived simple interactions (two-way) show the 

distinct SIC patterns. In the case of parallel minimum time 

model, the 2-way simple SICs are all positive while for the 

exhaustive parallel model the correspond 2-way simple SICs 

are all negative.  

  

 

 
Figure 2: The simple interaction SIC test for the 3-factorial research design. The research starting with the full factorial are displayed 

in the first column, crossed with the different types of mental networks. Although the full-factorial SIC cannot distinguish between 

parallel minimum time and parallel exhaustive models (the first row, SICs of the models are in a box), the simple two-way factorial 

SIC (the second row, boxed) can distinguish between the two.  

 

Limitations 

 

The SFT methodologies described so far are confined 

to exploration of homogeneous mental networks. The 

examples of the homogeneous networks are pure serial or 

pure parallel processing systems in which one stopping rule 

(either OR or AND) is applied on all network processes. 

Unfortunately the SFT signature predictions would no 

longer hold valid if a non-homogenous mental networks 

(such as a serial-parallel network) is analyzed.  

  Although the research literature proposes many 

homogenous mental network (e.g. Sternberg, 1967; Ratcliff, 

1978) many researchers have provided the evidence which 

shows that it is  not realistic to assume that the fundamental 

processing properties are always homogeneously distributed 

across larger mental networks. In fact, it is plausible to 

assume that larger mental networks could combine several 

fundamental properties within a single mental network.  

 

 

N-Factorial SIC for non-homogeneous networks 

 

One formal way to describe a cognitive system 

that can combine different fundamental properties is a 

directed acyclic network (Schweickert, et al., 2000). For 

example, the networks depicted in Fig 4, the first row, 

combines both serial and parallel processing. These mental 

networks utilize either OR or AND stopping rule. This 

means that the network will wait for the completion of both 

items before proceeding to the next stage (AND=exhaustive 

processing), or will terminate on completion of a single 

process (OR=processing termination is possible).  

Take for example a model of short-term memory. 

The original Sternberg’s model was later challenged by the 

results that showed a strong serial position recency effect in 

memory scanning. That is, recently stored items were 

analyzed faster than the older items in the set. The recency 

effect suggests that recent items may be stored in a different 

way than the older items. To account for the recency effect, 

several alternative models were published which proposed 

the idea that short-term memory processing consists of two 

subnetworks, serial and parallel. It was proposed that short 

term memory consists of two distinct temporal stores, so the 

items stored can have different accessibility rate (Clifton & 

Birenbaum, 1970; Waugh & Norman, 1965; Posner & 

Taylor, 1969; Burrows & Okada, 1971; Forin & 

Cunningham, 1973; see also Oberaurer, 2002; Oberauer & 

Bialkova, 2009) 

Work on the identification of the acyclic serial-

parallel networks has been conducted by Richard 

Schweickert, Ehtibar Dzhafarov, and a group of 

collaborators (Schweickert, Fisher & Goldstein, 2010; 

Schweickert, et al., 2000; Dzhafarov, Schweickert, & Sung, 

2004; for an overview see Schweickert, Fisher & Sung, 

2012). I will summarize the main findings concerning the 

SIC predictions which regard the serial/parallel networks.  

 

 

 

 

Statistical tests and subnetwork decomposability 

 

When an underlying processing system is 

nonhomogeneous,  one can expect that the N-factorial SIC 

test will become  less diagnostic with the increase of the 

number of processes and the level of heterogeneity. For 

example, imagine a large size network of up to 4 processes 

in which some of them form serial and some form parallel 

123
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subnetworks, each of which could utilize different stopping 

rules. Let us assume that the described 3-process network is 

a directed acyclic network not known to researchers. The 

researchers’ task is to reveal the network in terms of the 

fundamental mental properties (processing order, stopping 

rule, dependency).  

Theoretically, the 3-process network, which could 

be either serial or parallel, can be organized in many ways. 

If the mental network is homogeneous then there is only a 

single solution about how to organize them, by using one 

processing order and one stopping rule.  If the 3-process 

mental network is non-homogeneous then that number could 

be rather high: the number of different ways to organize 

them is close to one-hundred combinations.7  

  Although the SFT analysis could be employed at 

the full-factorial level analysis, it is immediately striking that 

such a high number of possible mental network 

organizations would generate too many three-factorial SIC 

predictions. In the best case, some of these 3-process 

combinations would generate unique SIC patterns that could 

be used to clearly distinguish them from other possible 

combinations. However, it is more likely that many such 

combinations  would produce identical SIC shape 

predictions, thus with the potential to diminish applicability 

in differentiation of subnetworks. 

In the above section on the sample interactive 

factorial tests, we learned that more diagnostic power is 

achieved by analysis of the lower level factorial interactions. 

The SFT analysis of the nonhomogeneous system should 

proceed from the full factorial to a simpler factorial analysis. 

In fact, the strategy of factoring out (dropping) some 

processes from the full factorial design proves to be effective 

when applied in SFT factorial analysis. As in the above 

homogeneous network analysis case (Figure 2), the 

marginalization of the effects of some processes allows us to 

reach the simplest subnetworks, consisting of only two 

processes (N=2), which are the homogeneous networks by 

definition. The converging idea here is that a simple-

factorial analysis should improve diagnosis of possible 

different subnetworks within a more complex 

nonhomogeneous one, thus helping to improve the 

diagnostic power of the SFT analysis. 

 An immediate concern here is that even though we 

can isolate and analyze small-size subnetworks within a 

more complex one, what SIC predictions should we expect 

to see? For example, a two-process serial subnetwork may 

be embedded within a system of parallel process inside the 

entire network. The question here is whether the 

identification of such a small serial subnetwork would be 

affected because of the connection to other heterogeneous 

parts of network? This concern is reasonable, because the 

observed data about the small size network is based on the 

response of the entire mental network.  

 A large body of such a work has already been 

conducted (Schweickert, Giorgini & Dzhafarov, 2000; 

Dzhafarov, Schweickert, & Sung, 2004) and it is possible to 

summarize. The work is limited to the so called serial 

                                                           

7 To get the correct number of possible combinations of 

organization of 3 processes, one has to take into account that each 
process can be either serial or parallel (8 combinations for 3 

parallel-networks in which a single dominant stopping rule 

is used, but the processes can be organized in either serial, 

parallel or combined subnetworks (e.g. Schweickert, et al., 

2000). The general theorems apply to many cases in a 

distribution free manner.  

 

  

Findings 

 

Under the same conditions specified above the 

summary of the SIC function expectations is presented 

below and in Figure 3. In the case of detection of a parallel 

subnetwork (N=2) connected to a serial process(es) within a 

larger network, with either AND or OR gates, the SIC 

functions predictions are identical to those of an isolated 

parallel two-process network (Theorem 4, case 1, from 

Schweickert, et al., 2000). That is, the diagnostic SIC shape 

of the parallel subnetwork does not change its shape with the 

presence of another serial process within the same network 

(in Figure 3). Thus, in the case of parallel AND gate the SIC 

function is negative for all times. In the case of parallel OR 

gate, the SIC function is positive for all times. 

In contrast, predictions for the serial subnetworks 

are less specific than those for the parallel subnetworks. In 

the case of serial subnetwork (N=2) connected to a parallel 

process(es) within a larger networks, the SIC functions are 

not identical to those of isolated two-process serial networks. 

In the AND serial subnetwork (N=2), the area under the SIC 

function is negative for a short period of time (Theorem 5, 

Schweickert, et al., 2000; Theorem 6.2 Dzhafarov, et al., 

2004) and then changes sign at least once. Overall, the area 

under the SIC curve is equal or larger than zero (Theorem 

6.1 from Dzhafarov, et al., 2004) (Figure 3). In the OR serial 

subnetwork (N=2), the area under the SIC curve is equal or 

lower than zero (Theorem 5, Schweickert, et al., 2000; 

Theorem 6.1 from Dzhafarov, et al., 2004) (Figure 3) 

 

 

Limitations 

 

The theorems and proofs (Schweickert, et al., 

2000; Dzhafarov, et al., 2004) provide the general diagnostic 

shape of SIC function for a small size (N=2) mental 

networks embedded in a larger serial-parallel network. The 

prediction results are of limited diagnostic power for 

detecting unknown subnetworks. The reason is that in some 

cases different types of subnetworks would predict the same 

SIC under the general specifications and the listed 

conditions. The formal proofs operate at the level of non-

strict inequalities. For example, such approach cannot be 

used to distinguish between the serial AND subnetwork and 

the parallel OR subnetwork and between the serial OR 

subnetwork and the parallel AND subnetwork. These two 

pairs cannot be disentangled given the SIC results in an 

unknown underlying mental network.  

 

processes) and that each process could be assigned either the OR 

or AND stopping rule (another 8 combinations), thus making a 
total of 8 x 8=64 combinations.  
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Figure 3: SIC functions predictions for the serial and 
parallel subnetworks, cross with the minimum time 

stopping rule (OR) and exhaustive stopping rule (AND). 

The factorially manipulated (indicated by the arrows in 
the first row) processes, are embedded in the serial-

parallel network. The SIC shape expectations are not 

exact because they are the result of not so strict 
inequalities (Schweickert, et al., 2000; Dzhafarov, et al., 

2004). The unknown properties are indicated by the 

question signs 

 

 

Putting it all together: homogeneous and non-

homogeneous subnetworks N=2 

 

It is still possible to recuperate more of the 

diagnostic power (Theorem 5, Schweickert, et al., 2000; 

Dzhafarov, et al., 2004) from an SFT analysis. The SFT 

signatures are shared between different serial and parallel 

subnetworks which utilize different stopping rules (AND 

and OR). In many cases in research studies, it is possible to 

fix the stopping rule methodologically. Such examples are 

target-present or target-absent responses which are designed 

by a researcher. Providing high accuracy in subjects’ 

responses, a researcher is able to analyze target-present 

responses as likely candidates of using the OR rule and 

target-absent response as using the AND rule. In other 

words, a researcher can separate experimental conditions in 

which the AND rule or OR rule are used. If the stopping rules 

are fixed by researcher, and analyzed separately by target-

present and –absent conditions, then the SIC signatures can 

be used to distinguish between the serial and parallel 

processing subnetworks, as depicted in Figure 3.   

The question is why do parallel subnetworks 

(N=2) embedded in a serial network predict the same SIC 

results as a homogeneous parallel network of the same size 

(N=2) while, at the same time, the serial system subnetwork 

(N=2) embedded in a parallel processing network doesn’t 

predict the same SIC results as a homogeneous serial 

network of the same size?  

  Consider the case depicted in Figure 3, left 

column, which show that the two serial processes, A and B, 

are combined in parallel with the third process C. If A  and 

B are selectively influenced by the corresponding factorial 

stretching manipulations (to produce HH, HL, LH and LL) 

then what should be the predicted SIC function for the two 

serial processes?  

The proof (Schweickert, et al., 2000; Dzhafarov, 

et al., 2004) shows that, depending on the stopping rule, the 

SIC function for the two serial processes (tA+tB) should be 

zero or largely positive if the AND gate is used as the 

stopping rule, that is, the system waits for the slower of the 

two components, that is Max(tA + tB, tC). The SIC function 

should span the areas below and above x-axis that is ether 

zero or is negative (it can have positive values too, but the 

total sum of the spanned area is negative). If the OR gate is 

used, that is, the system stops on the first completed 

component Min(tA+ tB, tC), the approximate SIC shape is not 

really known: the number of x-crossings of SIC function is 

not known. What is known is that the total area spanned by 

the SIC is either positive (AND) or negative (OR). In other 

words, the corresponding MIC values should be positive 

(AND) or negative (OR).  

An alternative perspective into the result of SIC 

function can be used by analyzing the MIC values of the 

double factorial difference on the situation depicted in 

Figure 3, the first subnetwork (AND) on the left.  

For example, for the subnetwork Max( , )A CBt t t

, it is possible to state the following:  

 
[Max( , );a,b,c] [ ;a,b] (1 ) [ ;c]A AB B CCE p Et t t t t p E t        

 

That is, the total time to complete processing in the serial-

parallel network depicted in Figure 3, left panel, is equal to 

the probability mixture of the two events: One, when the 

slowest component is 
BAt t  with probability p, and two, 

when the slowest component coming from the parallel 

process
Ct  with probability (1-p).  

Another observation is that the random variable in 

the underlying process C has a fixed rate (not stretched) 

while the rates for A+B depend on the factorial stretching 

effects imposed on processes A and B (a,b={low and high})  

In the parallel system, probability p is defined as 

the probability that process A+B has completed before the 

second parallel process C. Here, it is shown as the integral 

over the completion density function of tA+tB (that is, tA+tB 

is completed first, thus the subscript 1), and the survivor 

function specifying that the process C has not been 

completed yet (has not completed first, thus the subscript 1).  

 

1 1

0

,C ( ) ( )AB Cp AB f t S t dt



      

    

Since we are focused on the sign of the MIC value 

(that reveals the area under the SIC function) of the two 

serial processes A and B, 
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 One can immediately infer that the rate of process 

C would directly affect the MIC sign through the value of 

the parameter p. One can expect that the probability of the 

processing order p will change depending on the relative 

speeds of the parallel processes A+B and C. For example, in 

the AND system, if the process C is very fast (p is 

approaching to 1), then the system will stop more frequently 

on the serial A+B completion times; if the process C is very 

slow (p is approaching to 0) then the system is more likely 

to stop on completion time of the process C. It is interesting 

observation that in this case the MIC value is a probability 

mixture of different factorial conditions (HH, HL, LH and 

LL) which are unequally weighted with the probability p. 

That is, the p value is different for each factorial condition 

(pLL, pLH, pHL, pHH) depending on the relative rate of 

processing completion of both the A+B and C components. 

We know from the proof of Schweickert, et al. (2000) that 

the SIC function for such a mental network is mainly 

positive function thus the MIC>0.  

In order to observe the shape of the SIC function 

of such a mental network, I provided the converging 

evidence by simulation. The results are based on the 

extensive simulations of the random walk process with 

absorbing boundaries which are  used to characterize rate of 

completion of each process in the subnetwork. The 

simulations were conducted across different values of 

parameters. Here, the converging result is that, in the AND 

serial subnetwork, the SIC is S-shaped function that have 

only one x-crossing with a larger positive area then negative 

area (MIC>0) (see Figure 4, the first row). The simulation 

results add to the converging evidence to the simulation 

using the class of exponential distribution (Schweickert, et 

al., 2000; Dzhafarov, et al., 2004). The simulation results in 

Figure 4 show that depending on the relative speed of the 

parallel processes, the SIC shapes undergo the expected 

transformation: as the process C becomes faster, then the 

revealed SIC and MIC shape indicate pure serial N=2 mental 

network. This is because as C becomes very fast then the 

network finished mostly on the completion of the serial 

processes A+B. 

 

 

 
Figure 4: The simulation results of the serial-parallel network depicted in the first column for two different stopping rules (AND and 

OR). The subnetwork of interest is made of two serial processes and one in parallel with the first two. Across columns, the duration 
of the third parallel process is manipulated, such that the process is shortened, while the two processes in serial are of fixed parameter 

value time duration. In the simulation model each processing time completion was determined by the simple random walk process 

with two bounds and probability p of stepping to one of the bounds. 10000 trials were conducted per factorial condition.       

 

 

 

The simulation results for Serial OR subnetworks 

(Figure 3, left panel the second row), showed one crossing 

S-shaped SIC function, similar to those of Serial AND 

subnetwork. As shown in a series of simulations based on 

the duration of the parallel process, the faster it becomes, it 

is more likely that the subnetwork will finish on a parallel 

process first and would not wait for the completion of the 

two serial processes. The result is that the SIC shape 

becomes more squished, showing some small negative 

MICs, until it completely dissolves into a straight line.  

In contrast, the serial-parallel AND network 

depicted in Figure 3 (second column) shows the parallel 

subsystem embedded in the serial network.  The predicted 

MIC value and SIC function are equivalent to the pure 

(homogeneous) parallel AND model for the N=2 number of 

processes. (The proofs are straightforward and is presented 

in Schweickert, et al., 2000, p. 502, Case2; and also in Fific, 

2006, Appendix). Also when the OR gate is used in the same 

network both the MIC and SIC make predictions as the pure 

(homogeneous) parallel OR model for the N=2 number of 

processes.  
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Discussion 

 

There has been great deal of progress over the last 

fifty years in both the theoretical development of various 

cognitive models and in developing methods of validation of 

such models. The building blocks of cognitive models are 

defined as the fundamental properties of mental processes. 

These are: processing order, stopping rule, process 

dependency, and processing capacity. 

The current dominant approaches to exploring 

underlying cognitive models rely mostly on formal 

parametric descriptions of the cognitive models. So, the 

cognitive models are seen as a family of a finite number of 

distributions that are described by a set of parameters. 

Consequently, cognitive models have been tested by 

examining the parameter values, observing the parameter 

values that are the most likely to generate data (least-square 

and maximum likelihood estimations), by applying the 

model selection procedures (AIC, BIC), or by using more 

advance techniques to account for prior parameter values 

such as in the Bayesian model analysis (for a short review 

see Liu, & Smith, 2009).  

Such approaches provide an invaluable set of tools 

for model exploration. However, these approaches depend 

on the parametric assumptions of the models. In many cases, 

the model exploration is carried over by the very time 

consuming and computer intensive methods. In order to find 

the best fitting model’s parameters, one has to employ 

optimization search for parameters, which are, even 

nowadays, limited by computational power. Even the most 

advance methods, such as Bayesian inference and model 

selection (Lee & Wagenmakers, 2013; Raftery, Gelman, 

Rubin, & Hauser, 1995) require a simulation method known 

as Markov chain Monte Carlo (MCMC) which is not 

immune from days of sampling of simulated data from the 

unknown parameter values.  

The groundbreaking work of James Townsend and 

other essential contributors led to the creation of the Systems 

Factorial Technology (SFT) - a suite of methodological tools 

for directly investigating the fundamental properties of 

cognitive operations. The SFT approach, created by James 

Townsend, rests on rigorously tested mathematical tools for 

discriminating between serial and parallel processing, 

exhaustive and self-terminating stopping rules, and 

stochastic independence and dependence, as well as for 

discerning the capacity of an investigated system, all in a 

parameter-free manner.  

SFT is an alternative to exploring a parameter 

space for the process of interest. The SFT requires factorial 

research design of N-number of binary valued factors that 

selectively stretch the processes of interest, and requires the 

response time measure. The response time results are either 

aggregated (mean) or used to estimate the survivor 

functions, across the respective factorial conditions. The N-

order difference function is applied on the results and the two 

statistics are obtained MIC and SIC. The MIC and SIC are 

examined to make inference about the fundamental 

properties of processes. The stronger statistic here – the SIC 

function – reveals the different signatures for different 

fundamental properties.  

The present study is focused on further refining 

recent advances in SFT methodology (Yang, Fific & 

Townsend, 2014) and on the development of new tools for 

use with larger mental networks. The motivation for this 

study was to address and remove the two limitations of the 

current SFT methods when applied on larger mental 

networks. The first concern was revealed when SFT was 

applied on the increasing number of processes under 

investigation (Yang, Fific & Townsend 2014): the predicted 

SIC signatures were shared between different cognitive 

models. This concern was by addressed by inclusion of 

simple interaction SIC tests conducted on N=2 subnetworks, 

the simple-interaction SIC test were carried over by ignoring 

some variables in a higher order factorial design (N>2) and 

dropping them from the factorial design. The second concern 

was that the main results so far have been confined to the 

class of the homogeneous mental networks and neglect the 

possibility that underlying mental networks is non-

homogeneous (such as serial/parallel networks) 

To address this concern the present study 

integrated the results of the simple interaction SIC analysis 

for the higher order factorial design (N>2) with the factorial 

tools developed to explore non-homogeneous mental 

networks which may consist of both serial and parallel 

processes (so-called serial/parallel networks Schweickert, et 

al., 2000; Dzhafarov, Schweickert, & Sung, 2004). The 

results of the integration are summarized so that the SIC 

signature expectations for various N=2 subnetworks were 

generated. The current study also provided the converging 

evidence from the simulations regarding the detailed SIC 

expectations. 

As a strong alternative to parameter-dependent 

model-testing approaches, the SFT is a powerful tool to 

analyze processes underlying any cognitive activities. This 

study calls for further exploration of more complicated 

serial-parallel mental networks and further studies that 

should extend to current ongoing revolution in the analysis 

of neural networks (e.g., Lisman, & Idiart, 1995; Verwey, 

Shea,  & Wright, 2015; Agliari, Barra, Galluzzi, Guerra, 

Tantari, & Tavani, 2015; Rushworth,  Kolling, Sallet, & 

Mars, 2012; Lewis-Peacock, Drysdale, Oberauer, & Postle, 

2012;  Woodman, & Luck, 2003; Pooresmaeili, Bach, & 

Dolan, 2014;  Ward, 2003; Raghavachari, Kahana, Rizzuto, 

Caplan, Krischen, Bourgeois, Madsen & Lisman, 2001; For 

the review of the current cognitive methods borrowed by the 

neural approaches see Caplan, 2009). Future studies on how 

to use SFT could provide an important window in the 

organization of mental process and model validation 

procedures which would not be easily paralleled by the other 

approaches. 
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